
 

Fifteenth International Congress of the Brazilian Geophysical Society 

 
Least-squares RTM: Theory and applications 
Ping Wang*, Shouting Huang, and Ming Wang (CGG) 

Copyright 2017, SBGf - Sociedade Brasileira de Geofísica 

This paper was prepared for presentation during the 15
th
 International Congress of the 

Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 31 July to 3 August, 2017. 

Contents of this paper were reviewed by the Technical Committee of the 15
th
 

International Congress of the Brazilian Geophysical Society and do not necessarily 
represent any position of the SBGf, its officers or members. Electronic reproduction or 
storage of any part of this paper for commercial purposes without the written consent 
of the Brazilian Geophysical Society is prohibited. 
 ____________________________________________________________________  

Abstract 

We investigate how current least-squares reverse time 
migration (LSRTM) methods perform on subsalt images. 
First, we compare the formulation of data-domain vs. 
image-domain least-squares migration (LSM), as well as 
methods using single-iteration approximation vs. iterative 
inversion. Next, we examine the resulting subsalt images 
of several LSRTM methods applied on both synthetic and 
field data. Among our tests, we found image-domain 
single-iteration LSRTM methods, including an extension 
of Guitton’s (2004) method in the curvelet domain, not 
only compensated for amplitude loss due to poor 
illumination caused by complex salt bodies but also 
produced subsalt images with fewer migration artifacts 
(i.e., noise) in the field data. By contrast, an iterative 
inversion method showed its potential for broadening 
bandwidth in the subsalt, but was less effective in 
reducing noise. Based on our understanding, we 
summarize the current state of LSRTM for subsalt 
imaging, especially between single-iteration and iterative 
LSRTM methods. 

Introduction 

We can consider recorded seismic data to be the results 
of forward modeling experiments through subsurface 
structures. To image the reflectivity of the subsurface, we 
need to reverse the forward wave-propagation effects 
with an inverse of the forward modeling operator. Reverse 
time migration (RTM), the state-of-the-art imaging 
technology for complex structures (Baysal et al., 1983; 
Etgen et al., 2009; Zhang and Zhang, 2009), uses an 
adjoint modeling operator to approximate the inverse of 
the forward modeling. However, the accuracy of this 
approximation is degraded by spatial aliasing, limited 
aperture, noise, and non-uniform illumination due to 
complex overburden (Claerbout, 1992). As a result, the 
RTM image may have migration artifacts with limited 
bandwidth and uneven amplitudes (Gray, 1997).   

Least-squares migration (LSM) was proposed to 
approximate the inverse of the forward modeling operator. 
through either an iterative inversion (Tarantola, 1987; 
Schuster, 1993; Nemeth et al., 1999) or a single-iteration 
inversion (Hu et al., 2001; Rickett, 2003; Guitton, 2004; 
Lecomte, 2008). In recent years, least-squares reverse 
time migration (LSRTM) has attracted considerable 
attention (Wong et al., 2011; Dai et al., 2013; Zhang et al., 
2013; Zeng et al., 2014). Improved image quality (both 

continuity and resolution), reductions in migration artifacts 
and noise, and better amplitudes are often cited as 
benefits of LSRTM; it is thus considered the next 
promising technology for subsalt imaging in the Gulf of 
Mexico (GOM) and other geologically complex regions. 

Theory 

LSM was first formulated in the data domain by Tarantola 
(1987). Data-domain LSM inverts for a reflectivity model, 
𝑚, to fit the recorded data, 𝑑0, 

𝑓𝑑(𝑚) =
1

2
‖𝑑0 − 𝐿𝑚‖2,                                   (1) 

where 𝑓𝑑 is the cost function to be minimized and 𝐿 is the 

linearized Born modeling operator or demigration 
operator. Alternatively, LSM can be formulated in the 
image domain (Tang, 2008). Image-domain LSM inverts 
for a reflectivity model to fit the raw migrated image, 

𝑚0 = 𝐿𝑇𝑑0, 

𝑓𝑖(𝑚) =
1

2
‖𝑚0 − 𝐿𝑇𝐿𝑚‖2,                                (2) 

where 𝐿𝑇 is the migration operator. If 𝐿𝑇𝐿 is invertible, the 
least-squares solution for both Equations 1 and 2 is 
unique and thus the same:  

𝑚 = (𝐿𝑇𝐿)−1𝐿𝑇𝑑0,                                            (3) 

where 𝐿𝑇𝐿 is the so-called Hessian matrix, 𝐻. The key to 

LSM is to obtain the inverse of 𝐻; however, the 

computation and storage of 𝐻 are not feasible for real 3D 

problems. Alternatively, different approximate solutions, 
including gradient-based iterative approaches (Schuster, 
1993; Nemeth et al., 1999; Tang, 2008) and single-
iteration approaches (Hu et al., 2001; Rickett, 2003; 
Guitton, 2004; Lecomte, 2008), have been pursued. 

1. Iterative least-squares migration 

Regardless of the invertibility of 𝐻, both Equations 1 and 

2 can be iteratively solved by either steepest descent or 
conjugate gradient methods. The gradient for Equation 1 
can be written as 

𝑔𝑑 = 𝐿𝑇(𝑑0 − 𝐿𝑚),                                          (4) 
while the gradient for Equation 2 can be written as 

𝑔𝑖 = 𝐿𝑇𝐿(𝑚0 − 𝐿𝑇𝐿𝑚).                                   (5)  

For one iteration of LSM, the computation of 𝑔𝑑 in 

Equation 4 costs one Born modeling (i.e., demigration) 
and one migration; the computation of 𝑔𝑖 in Equation 5 

doubles this cost because of the cascade of modeling and 
migration operators. If ten iterations are needed for 
convergence, the costs of data-domain and image-
domain iterative LSM are at a level of 20 and 40 
migrations (although part of the computation for Born 
modeling and migration may be shared to save some 
costs), respectively. This can be computationally 
prohibitive for modern 3D marine streamer data that uses 
RTM extensively for model building as well as for final 
migrations that compute images with moderate- to high-
frequency data. 
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2. Single-iteration least-squares migration 

As discussed above, direct (Equation 3) or iterative 
(Equations 4 and 5) inversion methods are either 
impractical or expensive. The cost-reducing alternative is 
to approximate the Hessian matrix in a single iteration. 
Lecomte (2008) and Fletcher et al. (2016) proposed to 
obtain the Hessian matrix using point spread functions 
(PSFs). The PSF method computes the impulse response 
(Hessian) on a coarse grid (to reduce interference 
between PSFs) of scattered points. The Hessian for every 
image point is then obtained by interpolating between 
computed PSFs. LSM results are achieved by 
deconvolving computed PSFs from the raw migration 
image. 

Guitton (2004) proposed to use non-stationary matching 
filters to approximate the inverse of the Hessian matrix in 
one iteration. In Guitton’s approach, Born modeling (i.e., 
demigration) is first performed using the raw migration 
image, 𝑚0, and the existing velocity field to derive 

synthetic data, 𝑑1 = 𝐿𝑚0, which are then remigrated to 

obtain a new image: 

𝑚1 = 𝐿𝑇𝐿𝑚0.                                               (6) 
Next, non-stationary matching filters (or inverse Hessian 
filters), 𝐹, are found by minimizing the following cost 

function: 

𝑓(𝐹) =
1

2
‖𝑚0 − 𝐹𝑚1‖2.                             (7) 

After obtaining 𝐹, the image-domain single-iteration LSM 
image can be written as: 

 𝑚 = 𝐹𝑚0.                                                  (8) 

Guitton (2004) computes multi-coefficient matching filters 
in the spatial domain (Rickett et al., 2001). However, 
different events may have different illumination patterns. It 
is therefore desirable to decompose the input image for 
more accurate derivation of inverse Hessian filters. 

3. Curvelet-domain Hessian filter (CHF) 

The curvelet transform decomposes seismic events into 
different orientations and frequency scales. Utilizing the 
curvelet transform, we can extend the idea of a guided 
image filter proposed by He et al. (2013) to formulate a 
curvelet-domain Hessian filter (CHF). The cost function of 
the image-domain CHF can be written as 

𝑓(𝑠) = ‖𝐶(𝑚0) − 𝑠𝐶(𝑚1)‖2 + 𝜖‖𝑠‖2,             (9) 
where 𝐶 is the curvelet transform operator, 𝑠 is the 

matching filter, and 𝜖 is a weighting factor for Tikhonov 

regularization. The final output image is 

𝑚 = 𝐶−1(|𝑠|𝐶(𝑚0)),                                       (10) 

where 𝐶−1 is the inverse curvelet transform operator and 
| | is used to remove the phase and makes the matching 

filter a zero-phase filter. This CHF scheme can also be 
extended to the data domain (Khalil et al., 2016).  

To compensate for offset-dependent illumination patterns, 
we further extend CHF to surface-offset gathers (SOGs) 
(Giboli et al., 2012): 

𝑓(𝑠𝑠𝑜𝑔) = ‖𝐶(𝑚0) − 𝑠𝑠𝑜𝑔𝐶(𝑚1
𝑠𝑜𝑔

)‖2 + 𝜖‖𝑠𝑠𝑜𝑔‖2,     (11) 

𝑚𝑠𝑜𝑔 = 𝐶−1 (|𝑠𝑠𝑜𝑔|𝐶(𝑚0
𝑠𝑜𝑔

)).                                  (12) 

Here, the same raw stacked image (𝑚0) is used to design 

the guided filter for each offset class. We note that the 
zero-phase filter is important for retaining event curvature.  

Application to synthetic data 

The SEAM I model contains realistic velocity contrasts 
with complex salt geometries that create a variety of 
subsalt illumination issues. It is an ideal synthetic data set 
for our initial evaluation of different LSRTM algorithms. 
For simplicity, we used the true velocity model and 
synthetic input data without surface multiples or added 
noise. To avoid the “inverse crime” (using the same 
modeling engine for both input and LSRTM), we modeled 
the input data using acoustic full-wave modeling instead 
of acoustic Born modeling, the demigration engine of all 

 
Figure 1: SEAM I synthetic study: (a) RTM image using forward modeled synthetic data; (b) iterative LSRTM image; (c) PSF 

deconvolution image; (d) CHF image; (e) amplitude decay curves (orange box in a) for images in Figures 1a-d. 
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Figure 2: SEAM I synthetic study: (a) raw RTM surface-

offset gathers; (b) LSRTM-CHF surface-offset gathers; (c) 
LSRTM-CHF stacked image. Red lines in (c) mark the 
gather locations in (a) and (b). 

the LSRTM algorithms in this study. The modeling 
frequency is 10 Hz, the shot grid is 150 m × 150 m, while 
the receiver grid is 100 m × 100 m, and the maximum 

offset is 8 km in both inline and crossline directions. 

Figure 1a is the raw RTM stack and Figure 1b shows the 
RTM stack after 20 iterations of iterative LSRTM. Figures 
1c and 1d are the images after single-iteration LSRTM: 
PSF deconvolution and CHF, respectively. Overall, all 
three LSRTM methods produced similar stacks (Figures 
1b, 1c, and 1d) with visually balanced amplitudes in the 
subsalt. To quantify the amplitude restoration, we 
compared the corresponding amplitude decay curves 
extracted from Figures 1b, 1c, and 1d with the input 
reflectivity (Figure 1e). Analogous to the RTM stacks, all 
three LSRTM methods produced similar amplitude decay 
curves as compared to the ground truth.  

In the raw RTM SOGs (Figure 2a), we observe that the 
gathers on the left-hand side have weak amplitudes at 
near offsets but normal amplitudes at mid and far offsets. 

This is due to the wavefields or raypaths contributing to 
the near offsets traveling through a small salt body in the 
overburden, while the raypaths of mid to far offsets 
undershoot the small salt body. This is not the case for 
the gathers on the right, which contain weak amplitudes 
across all offsets due to illumination loss from a much 
larger overburden salt body. As expected from LSRTM, 
gathers after CHF (Figure 2b) show balanced amplitudes 
across offsets as well as gather groups. 

From these SEAM I subsalt synthetic LSRTM tests, we 
summarize the following: 

1. All three LSRTM methods – iterative LSRTM, PSF, 
CHF – produced similar stack images and subsalt 
amplitude decay curves (Figure 1e) that matched 
the decay curve of the reflectivity model (the 
ground truth). However, under closer inspection, 
none of the three methods recovered events that 
are completely missing (red arrow in Figure 1a) on 
the raw RTM stack. Such events have very low or 
no illumination from the given acquisition and, 
therefore, cannot be modeled through Born 
modeling and restored by LSRTM. 

2. Iterative LSRTM produced results comparable to 
those from the two single-iteration methods after 
~20 iterations. This is consistent with Guitton’s 
(2004) conclusion that a single-iteration LSRTM is 
a cost-effective alternative to iterative inversion. 

3. As proposed by Fletcher et al. (2016), we 
computed multiple PSFs of interleaving grids to 
improve spatial sampling for interpolation while 
ensuring sufficient isolation of PSFs. This scheme 
was effective, but decreased the efficiency of the 
PSF approach. We also used salt damping to 
minimize deconvolution instability around salt 
bodies. In addition, we found a reweighting-based 
sparse deconvolution can be used to control noise 
(Sacchi, 1997).  

4. In addition to its computational efficiency, CHF is 
appealing because it extends the illumination 
compensation from stack to SOGs, which 
potentially can be used for amplitude versus offset 
analysis and velocity model building. 

We note that this test is not completely realistic because 
we did not include surface-related multiples or noise in 
the synthetic data, and we used the correct velocity model 
for the test. The reality and possibilities of LSRTM for 
subsalt imaging would be better answered using field data 
in a more realistic context, i.e., with an inevitably 
inaccurate velocity model and abundant noise from 
residual multiples. 

GOM field data example 

A wide-azimuth streamer data set from the Keathley 
Canyon area of the Gulf of Mexico was selected for the 
field data test. Although the area is known for well-defined 
salt geometries and overall good data quality, subsalt 
images in the area still suffer from uneven illumination, 
visible migration artifacts, and suboptimal resolution. The 
input data underwent typical preprocessing to remove 
noise, ghost energy, multiples, etc.  

b

a

c
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Figure 3: Gulf of Mexico field data example: (a) raw RTM image; (b) iterative LSRTM image (c) CHF image. Orange circle 

marks a weak amplitude zone due to illumination loss and green arrow marks the prospective Lower Tertiary interval. 

 

Figure 4: Gulf of Mexico field data example: (a) raw RTM 

stack image; (b) raw RTM surface-offset gathers; (c) 
LSRTM-CHF stack image; (d) LSRTM-CHF surface-offset 
gathers. Orange lines in (a) and (c) mark the gather 
locations in (b) and (d).   

When compared to the raw RTM image (Figure 3a), 
iterative LSRTM (Figure 3b) produced more continuous 
subsalt events, particularly within the orange circle in 
Figure 3a. Similar to the results of the synthetic test, 
subsalt amplitudes in the field data are also more 
uniformafter LSRTM. The resolution of the subsalt region 
in Figure 3b appears to be higher than the raw RTM stack 
(Figure 3a). The apparent higher resolution from the 
iterative LSRTM also boosted overall noise content. It is 
likely some of the noise was caused by over-fitting of 
some events that were present in the input data but 
cannot be correctly modeled by acoustic Born modeling. 
We stopped the test at the 10th iteration despite the 
presence of primary signal still in the data residual, 
because the noise level was increasing with the number 
of iterations. The CHF image (Figure 3c) also shows 

balanced amplitudes and more continuous events in the 
subsalt. Unlike the iterative LSRTM, CHF did not 
noticeably alter the vertical resolution or frequency 
content. This is because we did not model the ghost when 
generating the demigration/migration image since the 
input data had already been deghosted, and we used a 
spiky source wavelet for both demigration and migration. 
As a result, the demigration/migration image (𝑚1) has 
similar frequency content to the raw RTM image (𝑚0).  In 

addition, the design of CHF discourages over-boosting of 
frequency content with low signal-to-noise ratio (S/N) in 
the raw RTM image.  

The quality of subsalt images is judged by many factors, 
including S/N, event and structural coherency, amplitude 
consistency, and resolution. Within the prospective Lower 
Tertiary interval (denoted by green up-down arrows in 
Figure 3a), CHF performed better in terms of noise 
suppression, while the iterative method yielded higher 
resolution but an increased noise level. Both methods 
were effective at balancing uneven amplitudes in the 
subsalt, as was also shown in the synthetic test.  

Figure 4b shows raw RTM SOGs (𝑚0
𝑠𝑜𝑔

) at locations 

indicated by the yellow lines in Figure 4a, and Figure 4d 
shows the same gathers after CHF (𝑚𝑠𝑜𝑔). We observed 

that SOGs after CHF have a higher S/N and more 
continuous subsalt events across all offsets while 
retaining the event curvatures. As counterintuitive as it 
seems, we may be able to use CHF SOGs to improve the 
velocity model, even though LSRTM assumes the velocity 
model is already correct. One possibility is to include CHF 
with key velocity model building steps, e.g., using the 
SOGs generated from CHF for better curvature picking 
and, in turn, better tomographic inversion. Of course, the 
computation of incorporating CHF in velocity estimation 
can be costly. 

Figure 4c shows the stack image after CHF. The image 
has more balanced amplitudes and fewer migration 
artifacts compared to the raw stack image in Figure 4a. 
Note that events in the light blue circle were not well 
imaged by RTM, possibly due to velocity errors and/or 
inaccurate salt interpretation. As a result, CHF was 
unable to fully recover the amplitude dimming.  

ba c

d

ba

c
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Discussion and conclusions 

The performance of LSRTM is largely limited by the 
quality of the raw RTM image. It is very difficult, if not 
impossible, for any LSRTM method to recover subsalt 
events and structures that are completely missing on the 
raw RTM image. The absence of subsalt events on the 
raw RTM image can arise from a combination of factors, 
such as very low or no illumination, severe noise 
contamination, or an inaccurate velocity model. In subsalt 
imaging, a high-quality input data set not only provides 
better subsalt illumination and noise attenuation, it is also 
conducive to better velocity model derivation. Naturally, 
using a good input data set can increase the chances of 
success of LSRTM. A case in point is the advent of full-
azimuth acquisition in the Gulf of Mexico, which has not 
only led to better subsalt illumination and noise 
cancellation, but has also produced higher-fidelity velocity 
models than would be obtained from a wide-azimuth data 
set. 

LSRTM has shown promising results in subsalt imaging. It 
improves the amplitude response and reduces migration 
artifacts for both stacked images and gathers by 
compensating for irregular illumination due to complex 
overburdens and acquisition footprints. This can also 
potentially benefit subsalt quantitative interpretation and 
time-lapse imaging. Through additional synthetic and field 
data trials, the subsalt imaging community will continue to 
improve the algorithms and turn more of the possible 
benefits of LSRTM into reality.  

Acknowledgments 

We thank SEG for the SEAM I model and CGG for 
permission to present this work.  

References 

Claerbout, J.F., 1992, Earth soundings analysis: 
Processing versus inversion: Blackwell Scientific 
Publications. 

Baysal, E., D. Kosloff, and J. Sherwood, 1983, Reverse-
time migration: Geophysics, 48, 1514–1524. 

http://dx.doi.org/10.1190/1.1441434. 

Dai, W., Y. Huang, and G. T. Schuster, 2013, Least-
squares reverse time migration of marine data with 
frequency-selection encoding: GEOPHYSICS, 78, no. 4, 

S233–S242. http://dx.doi.org/10.1190/geo2013-0003.1. 

Etgen, J., S. Gray, and Y. Zhang, 2009, An overview of 
depth imaging in exploration geophysics: Geophysics, 74, 

no. 6, WCA5–WCA17. http://dx.doi.org/10.1190/ 
1.3223188. 

Fletcher, R.P., D. Nichols, R. Bloor, and R.T. Coates, 
2016, Least-squares migration — Data domain versus 
image domain using point spread functions, The Leading 
Edge, P159-162. 

Giboli, M., R. Baina, L. Nicoletis, and B. Duquet, 2012, 
Reverse time migration surface offset gathers, Part 1: A 
new method to produce 'classical' common image 
gathers: 82nd Annual International Meeting, SEG, 
Expanded Abstracts, doi:10.1190/segam2012-1007.1. 

Gray, S. H., 1997, True-amplitude seismic migration: A 
comparison of three approaches: Geophysics, 62, no. 3, 

929–936. 

Guitton, A., 2004, Amplitude and kinematic corrections of 
migrated images for nonunitary imaging operators: 
Geophysics, 69, no. 4, 1017–1024, http://dx.doi.org/ 

10.1190/1.1778244. 

He, K., J. Sun, and X. Tang, 2013, Guided image filtering: 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 35, http://doi.ieeecomputersociety 
.org/10.1109/TPAMI.2012.213. 

Hu, J., G. T. Schuster, and P. A. Valasek, 2001, 
Poststack migration deconvolution: Geophysics, 66, no. 3, 

939–952, http://dx.doi.org/10.1190/1.1444984. 

Lecomte, I., 2008, Resolution and illumination analyses in 
PSDM: A ray-based approach: The Leading Edge, 27, no. 

5, 650–663, http://dx.doi.org/10.1190/1.2919584. 

Nemeth, T., C. Wu, and G. T. Schuster, 1999, Least-
squares migration of incomplete reflection data: 
Geophysics, 64, no. 1, 208–221. http://dx.doi.org 

/10.1190/1.1444517. 

Rickett, J., Guitton, A., and Gratwick, D., 2001, Adaptive 
multiple subtraction with non-stationary helical shaping 
filters: 63rd Annual Meeting, EAGE, Extended Abstracts, 
P167. 

Rickett, J. E., 2003, Illumination-based normalization for 
wave equation depth migration: Geophysics, 68, no. 4, 

1371–1379, http://dx.doi.org/10.1190/1.1598130. 

Sacchi, M. D., 1997, Reweighting strategies in seismic 
deconvolution: Geophys. J. Int., 129, 651-656. 

Schuster, G. T., 1993, Least-squares crosswell migration: 
63rd Annual International Meeting, SEG, Expanded 
Abstracts, 110–113. http://dx.doi.org/10.1190/segam2012 
-1425.1. 

Tang, Y., 2008, Wave-equation Hessian by phase 
encoding: 78th Annual International Meeting, SEG, 
Expanded Abstracts, 2201–2205. 

Tarantola, A., 1987, Inverse problem theory: Methods for 
data fitting and model parameter estimation: Elsevier 
Science Publishing Company. 

Wong, M., S. Ronen, and B. Biondi, 2011, Least-squares 
reverse-time migration/inversion for ocean bottom data: A 
case study: 81st Annual International Meeting, SEG, 
Expanded Abstracts, 2369–2373. http://dx.doi.org/ 
10.1190/1.3627684. 

Zeng, C., S. Dong, and B. Wang, 2014, Least-squares 
reverse time migration: inversion-based imaging toward 
true reflectivity: The Leading Edge, 33, 962–968. 
http://dx.doi.org/10.1190/tle33090962.1. 

Zhang, Y. and H. Zhang, 2009, A stable TTI reverse time 
migration and its implementation, 79th Annual 
International Meeting, SEG, Extended Abstracts, 2794-
2798. http://dx.doi.org/10.1190/1.3255429. 

Zhang, Y., L. Duan, and Y. Xie, 2013, A stable and 
practical implementation of least-squares reverse time 
migration: 83rd Annual International Meeting, SEG, 
Expanded Abstracts, 3716–3720. http://dx.doi.org 
/10.1190/segam2013-0577.1. 

http://dx.doi.org/10.1190/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/10.1190/segam2012
http://dx.doi.org/
http://dx.doi.org/

